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Abstract
The aim of this study was to investigate the effect of different strategies for handling low-
quality or missing data on prediction accuracy for direct genomic values of protein yield, 
mastitis and fertility using a Bayesian variable model and a GBLUP model in the Danish Jersey 
population. The data contained 1 071 Jersey bulls that were genotyped with the Illumina 
Bovine 50K chip. After preliminary editing, 39 227 single nucleotide polymorphism (SNPs) 
remained in the dataset. Four methods to handle missing genotypes were: 1) BEAGLE: 
missing markers were imputed using Beagle 3.3 software, 2) COMMON: missing genotypes 
at a locus were replaced by the most common genotype at this locus observed in the marker 
data, 3) EX-ALLELE: missing marker genotypes at a locus were treated as an extra allele, and 
4) POP-EXP: missing genotypes at a locus were replaced with population expectation at 
this locus. It was shown that among the methods used in this study, the imputation with 
Beagle was the best approach to handle missing genotypes. Treating missing markers as 
a pseudo-allele, replacing missing markers with a population average or substituting the 
most common alleles each reduced the accuracy of genomic predictions. The results from 
this study suggest that missing genotypes should be imputed in order to improve genomic 
prediction. Editing the marker data with a stringent threshold on GenCall scores and then 
imputing the discarded genotypes did not lead to higher accuracy. All marker genotypes 
with a GenCall score over 0.15 should be retained for genomic prediction.
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Abbreviations:  GC: GenCall; DGV: direct genomic breeding value; DNA: deoxyribonucleic acid; DRE: de-regressed  
 estimated breeding values; EBV: estimated breeding values; EDC: effective daughter contribution;  
 GBLUP model: linear mixed model; GWAS: genome-wide association study; h2: heritability, HWE:  
 Hardy-Weinberg equilibrium; iBay model: Bayesian model; r2

DRE: reliabilities of the de-regressed  
 estimated breeding values; SNP: single nucleotide polymorphism

Introduction
A number of factors determine the benefit from genomic selection (Meuwissen et al. 
2001). One such key factor is the accuracy of the predicted genomic breeding values. The 
accuracies of genomic predictions depend on many factors such as: reference population 
size (Hayes et al. 2009a), heritability of the traits (Goddard 2009, Hayes et al. 2009a, Su et 
al. 2010), marker density (Moser et al. 2010), effective population size (Goddard 2009) and 
relatedness between reference and validation population (Habier et al. 2010). Another factor 
is the quality of the available marker information. This is usually ignored when discussing the 
expected accuracies of genomic predictions.

Genotype datasets from laboratory have missing genotypes due to failed genotype calls. 
Genotype datasets also include low-quality of genotypes distributed across SNP markers. 
There are two major reasons for missing genotypes. One can be due to poor quality DNA 
samples. The other reason is when the observation at a SNP cannot be clearly assigned to any 
of the genotype clusters, so it becomes a missing genotype (Fu et al. 2009). These technical 
problems have two consequences. Firstly the amount of marker information available varies 
from individual to individual. Secondly some of the available marker information can be 
wrong (e.g. due to genotyping error).

A Previous study by Fu et al. (2009) showed a negative effect of missing genotypes on the 
genome-wide association study (GWAS) and the subsequent analyses, including estimation 
of allele/genotype frequencies, the measurement of Hardy-Weinberg equilibrium (HWE) 
and association tests under various modes of inheritance relationships. Recently, Edriss et 
al. (2012) studied the impact of marker editing procedures on the accuracies of genomic 
predictions in Danish Holstein and Jersey cattle populations. They reported most editing 
criteria had a minor effect on accuracy of genomic predictions, but the editing for GenCall 
(GC) score seemed to have a non-trivial effect.

GenCall score is a statistic which gives an indication of how accurate individual typings 
are (Oliphant et al. 2002). GenCall score is an index ranging from 0 to 1. Individual typings 
with low GC score (GC<0.2) are usually removed from genotype datasets as they are deemed 
unreliable and those with high GC score (GC>0.7) are assumed to be high-quality genotypes 
(Illumina Inc. 2005, Yokoyama et al. 2010). However, removing the genotypes with low GC 
score reduces the amount of available information, consequently reducing the accuracy 
of the prediction of the genetic merit (Edriss et al. 2012). Thus it is important to find a way 
to minimise the loss of information due to removing low-quality genotypes. This may be 
realised by appropriate methods to deal with missing genotypes.

Many methods have been used for handling missing genotypes in the process of genomic 
prediction. For example in the DMU package (Madsen et al. 2010) missing genotypes are 
replaced by the population expectation. Similarly iBay (Janss 2009) treats the missing 
genotype as a third allele of the locus and then proceeds to estimate its effect. These 
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methods to deal with missing genotypes are simple and easy to implement. However, a more 
satisfactory approach to handle missing genotypes is to impute missing genotypes using 
efficient imputation techniques.

Over the last ten years a number of imputation methods have become available to infer 
missing marker or genotypes conditional on observed genotypes. A widely used tool for 
imputation is the program Beagle (Browning & Browning 2009 Browning & Browning 2007). 
Beagle uses graphical models to infer missing genotypes conditional on observed marker 
genotypes at other loci and in other individuals. The approach is efficient and remains 
computationally feasible even for large datasets. 

Until now, there is no systematic study to investigate the effect of sporadic missing and low-
quality marker genotypes on the accuracy of genomic prediction. The aim of the present study 
was to evaluate the effect of GC score criteria for editing marker data and methods to deal with 
missing genotypes on accuracy of genomic predictions, based on the data from the Danish 
Jersey population. The original marker data were edited according to particular thresholds 
(i.e., different stringencies) on GC score and then dealing with missing genotypes using four 
different methods (Beagle, population expectation, most common genotype and extra allele).

Material and methods
Data

The data included 1 071 Jersey bulls, born between 1981 and 2005. The bulls were genotyped 
using a mixture of versions 1 and 2 of the Illumina Bovine SNP50 BeadChip (Matukumalli et al. 
2009). Marker typings were carried out either in-house at the Department of Molecular Biology 
and Genetics, Aarhus University or at GenoSkan A/S, Tjele, Denmark. De-regressed estimated 
breeding values (EBVs) for protein yield, mastitis and fertility index were used as response 
variables. The de-regression was carried out by applying the iterative approach (Jairath et al. 
1998) described by Goddard (1985) and Schaeffer (1985) using the MiX99 package (Strandén & 
Mäntysaari 2010) and with the heritabilities shown in Table 1, which were those used in Nordic 
cattle routine genetic evaluation. Summary statistics of de-regressed EBVs (DRE) for different 
traits in reference and test population are shown in Table 1. These traits are all sub-traits of the 
Nordic Total Merit index. Detailed descriptions of these index traits and their EBVs are given in 
the report by the Danish Cattle Federation (2006). Reliabilities of the DRE (r2

DRE) were calculated 
based on heritability (h2) of the traits and effective daughter contribution (EDC): 

r2
DRE = EDC , k = 4 − h2

 EDC+k  h2       (1)

Table 1
Heritabilities of the traits, numbers of bulls, average reliabilities, range and median of DRE in reference and 
test populations

Trait h2  Reference   Test   
  n  r2

DRE range median n r2
DRE range median

Protein yield 0.39 827 0.93 50.1-127.9 88.0 242 0.93 77.0-132.2 101.0
Mastitis 0.04 827 0.83 60.1-126.7 98.2 244 0.83 67.7-121.3 98.2
Fertility 0.04 826 0.56 20.1-162.5 103.7 244 0.56 11.6-157.6 105.9
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Marker editing

In the marker dataset received from the laboratories GC scores for each marker genotypes 
were reported. Marker genotypes with GC scores less than 0.15 had already been discarded. 
After discarding markers which were fixed in the population, had no valid chromosome 
position in the UMD 3.1 assembly (Zimin et al. 2009) or had a minor allele frequency less than 
0.01, 39227 SNPs were available for analysis. In addition, the edited data were further edited 
by removing the marker genotypes with GC score below thresholds of 0.4, 0.5, 0.60, 0.65 or 
0.70 and replacing them with missing ones which produced five additional datasets. In total, 
six edited marker datasets were used for genomic predictions.

Methods to handle missing markers

For the data to be analysed, missing marker observations were treated in each of four 
different ways. 1) BEAGLE: missing markers were imputed using Beagle 3.3 (Browning 
& Browning 2007) with default settings, 2) COMMON: missing genotypes at a locus were 
replaced by the most common genotype at this locus observed in the marker data, 3) EX-
ALLELE: missing marker genotypes at a locus were treated as an extra allele and 4) POP-EXP: 
missing genotypes at a locus were replaced with population expectation at this locus (see 
detail later). These approaches were performed regardless of whether the marker genotypes 
were absent in the data reported by the laboratories, or the marker observations had been 
removed in the editing process based on the GC score.

The imputation using Beagle was carried out for each chromosome independently. 
Haplotypes were constructed using the default parameter values in Beagle. Then, based on 
the inferred haplotypes, missing genotypes were imputed using a hidden Markov model. 

When using population expectation to replace missing genotypes, the population 
expectation at locus i was calculated as 

E(Mi)=0×q2
i+1×2piqi+2×p2

i=2pi     (2)

where E(Mi) is the population expectation for the genotype coefficient at the i-th marker, pi 

and qi are the allele frequencies and 0, 1, and 2 are the counts of the allele whose frequency 
is pi.

Statistical model

Direct genomic breeding values (DGVs) were predicted using either a Bayesian variable 
selection model or a linear mixed model, based on marker data edited using different 
thresholds on GC score.

Bayesian model (iBay): 

The iBay model is:

y = 1μ + Σ Xiqivi + e (3)

where y is the vector of DREs, 1 is a vector of ones, μ is the overall mean, m is the number of 
SNP markers, Xi is the design matrix of allele types at marker i, qi is the vector of scaled SNP 

  m

i=1



Eldriss et al.: GenCall and missing markers effect on genomic predictions accuracy782

allele effects of marker i, v1 is a scaling factor for SNP allele effects of marker i, and e is the 
vector of residuals.

It is assumed that qi and e have normal priors: qi ~ N (0,I) and e ~ N (0,Dσ2
e ) and vi has a 

positive half-normal prior: vi ~ TN(0,σ2
v ) with vi>0, where I is an identity matrix, D is a diagonal 

matrix, σ2
e is the residuals variance and σ2

v is scaling factor variance. The diagonal element i 
in matrix D is dii=1/wi, where wi is a weighting factor for the i-th DRE. The weighting factor, 
wi=reliability of DREi/(1-reliability of DREi), was applied to account for heterogeneous 
residual variances due to different reliabilities of DREs. To avoid possible problems caused by 
extremely high weights, values of r2

DRE>0.98 in the calculation of weights replaced 0.98.
iBay (Janss 2009) captures the features of BayesA (Meuwissen et al. 2001) but simplifies 

the computing algorithm. Details of the model and statistical procedures can be found in Su 
et al. (2010). The analyses were carried out using the iBay package. The Gibbs sampler was 
run as a single chain with a length of 50 000 samples of which the first 20 000 samples were 
discarded as burn-in. DGVs were estimated as posterior mean of Σ vi × qi from the remaining 
30 000 samples.

Linear mixed model (GBLUP): 

The GBLUP model (Hayes et al. 2009b, VanRaden 2008) is:

y = 1μ + Zg + e (4)

where y is the vector of DREs, 1 is a vector of ones, μ is the overall mean, Z is the design matrix 
associating g with y, g is the vector of additive genetic effects g~N(0,Gσ2

g ), where σ2
g  is the 

additive genetic variance, G is the realised genomic relationship matrix and e is the vector of 
random residuals e~N(0,Dσ2

e ), where σ2
e  is residual variance and D is the same as in the iBay 

model. Details of the model and the construction of the G matrix can be found in Su et al. 
(2012b).

Both the iBay and the GBLUP model were used for genomic prediction, based on the 
marker data in which missing marker were handled either by BEAGLE or COMMON. In 
addition, genomic prediction using the iBay model was also based on a marker dataset in 
which missing marker genotypes were handled by EX-ALLELE, while the GBLUP model was 
also based on a marker dataset in which missing marker genotypes were handled by POP-
EXP. The reason for this difference is that the GBLUP model predicts DGV based on genomic 
relationship matrix which is built using SNP genotype coefficients, while the iBay model 
predicts DGV based on SNP allele types. 

Validation of genomic predictions

The impact of the criteria to edit marker data and the methods to deal with missing markers 
on the accuracy of genomic prediction was assessed using a validation procedure where the 
whole dataset was divided into two parts. Animals born before 2001 (827 animals) formed 
the reference population and animals born after that year until 2005 (244 animals) formed 
the test population. Accuracies of genomic predictions were measured as the correlation 
between DREs and DGVs divided by the square root of average reliabilities of DREs for animals 
in the test population (Su et al. 2012b).

  m

i=1
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Results
The distribution of GC scores is shown in Table 2. Laboratories deleted the marker genotypes 
with the GC score less than 0.15 before reporting. The dataset received from laboratories had 
4.02 % of marker genotypes missing. Applying a stricter threshold up to of 0.7 on GC scores 
increased the proportion of missing genotypes to 9.36 %.

Table 2
Distribution of GC scores of marker genotypes over all markers and individuals

GC Score No. of marker genotypes Percentage Cumulative percentage

GC<0.15 3376578 4.02 4.02
0.15<GC<0.40 484582 0.58 4.60
0.40<GC<0.50 474162 0.56 5.16
0.50< GC <0.60 823913 0.98 6.14
0.60<GC<0.65 981216 1.17 7.31
0.65<GC<0.70 1726841 2.06 9.36
0.70<GC 76156942 90.64 100.00
Total 84024234 100.00 100.00

Figure 1 shows the accuracies of DGVs for protein yield, mastitis and fertility predicted 
using the iBay model and based on different marker datasets edited according to GC score 
together with different methods to deal with missing marker genotypes. As shown in figure 
1, dealing with missing marker genotypes using Beagle or COMMON led to slightly higher 
accuracies of DGVs than EX-ALLELE in all three traits. In the most cases, higher restriction 

Figure 1
The accuracy of DGV prediction using iBay for three different methods to dealing with missing genotypes 
(IMPUTE: imputed using Beagle, COMMON: replaced with most common genotype and EX-ALLELE: treat as an 
extra allele) in three traits: protein yield (square), mastitis (circle) and fertility (diamond).



Eldriss et al.: GenCall and missing markers effect on genomic predictions accuracy784

on GC score resulted in a slight decrease of accuracy of DGVs. On average over six datasets 
edited according to GC score, BEAGLE gave higher accuracies than EX-ALLELE. Increases were 
3.4 %, 1.49 % and 2.34 % for fertility, mastitis and protein. Results for COMMON exceeded 
EX-ALLELE by 2.7 %, 2.15 % and 2.33 % for fertility, mastitis and protein. With regard to traits, 
protein yield had the highest accuracies of DGVs, followed by mastitis and fertility had the 
lowest accuracy.

Figure 2 shows the accuracies of DGVs using the GBLUP model for all three traits when 
the marker genotypes with GC score less than a specified threshold were removed and then 
missing marker genotypes were manipulated with three different strategies. Among the three 
methods to handle missing markers, BEAGLE led to the highest accuracy of DGV, COMMON 
resulted in the lowest accuracy and POP-EXP in between. The rank of the three methods was 
the same for the three traits, but with larger differences for fertility and mastitis. On average 
over six datasets edited according to GC score, BEAGLE increased accuracy by 1.2 %, 0.89 % 
and 0.4 %, and POP-EXP increased by 0.4 %, 0.3 % and 0.2 % for fertility, mastitis and protein, 
respectively, compared with COMMON. Differences between the methods to handle missing 
markers were smaller when using the GBLUP model than when using the iBay model.

Figure 2
The accuracy of DGV prediction using GBLUP for three different methods to dealing with missing genotypes 
(IMPUTE: imputed using Beagle, COMMON: replaced with most common genotype and POP-EXP: replaced 
with population expectation) in three traits: protein yield (square), mastitis (circle) and fertility (diamond).



Archiv Tierzucht 56 (2013) 77, 778-788 785

Discussion
One of the challenges in genomic prediction is the quality of marker data. More stringent 
criteria on quality of marker genotypes ensure that the remaining marker genotypes have 
a higher quality, but at cost of losing more information (more missing marker genotypes). 
This study applied six thresholds of GC score to edit marker data and four methods to handle 
missing marker genotypes and the resulting marker data were used to predict direct genomic 
values. The results showed that the method to handle missing marker genotypes had a slight 
influence on the accuracy of genomic predictions and deleting marker genotypes with a GC 
score higher than 0.15 did not give a better accuracy of genomic predictions, no matter what 
method was used to deal with missing marker genotypes.

It has been shown that using missing genotypes in GWAS decreases the power (Browning 
2008, Fu et al. 2009). Fu et al. (2009) showed that missing genotypes had an effect not only 
on GWAS, but also on the estimation of allele/genotype frequencies and the measurement 
of HWE. Previous studies have shown that imputing missing genotypes improves the power 
of GWAS (Browning 2008, Pasaniuc et al. 2012). The current study shows that among the 
methods used in the analysis to deal with missing marker genotypes, imputing missing 
marker genotypes gave the highest accuracy of genomic predictions. The advantage was 
larger with more missing genotypes in the data.

In this study Beagle was selected for imputing missing marker genotypes, according 
to previous imputation studies in dairy cattle data. Johnston et al. (2011) compared five 
imputation methods (AlphaImpute, Beagle, FImpute, findhap and Phasebook) in Holstein 
and Brown Swiss populations and reported that Beagle was one of the methods that imputed 
missing genotypes most correctly. Chen et al. (2011) used three imputation methods (Beagle, 
DAGPHASE and findhap) in German Holstein data and the results showed that Beagle had the 
lowest error rate. Recently, in Angus cattle six imputation methods were compared (Beagle, 
IMPUTE, fastPHASE, AlphaImpute, findhap and Fimpute) and Beagle had the greatest 
imputation accuracy (Sun et al. 2012).

If there are missing marker genotypes in the input marker data, the program for the 
GBLUP model will replace missing marker genotypes with the population expectation. This 
approach is often applied when using GBLUP models. Using this approach, individuals with 
missing genotype of a particular marker do not contribute to the estimated effect of this 
marker. Also, the DGV of the individual does not include the effect of this marker (Su et al. 
2012a). The present study shows that this simple approach performed better than replacing 
missing genotypes with the most common genotype. The reason could be that the latter 
may introduce wrong information to some individuals, consequently a negative effect on 
their DGV accuracy. Therefore, removing the missing genotype effect is a better solution. 
However, replacing missing genotypes with the population expectation performed worse 
than imputation of missing genotypes.

In the iBay model, the codes of SNP alleles are defined as class variables. If there are 
missing marker genotypes in the input marker data, the program will treat missing marker 
genotypes at a locus as a new allele and then it will estimate the effect of this allele. Given 
that genotypes are missing at random, the expected effect of this allele is equal to the 
population mean at this locus. However, as alleles are not necessarily missing at random and 
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the estimated effect is subject to random error, the estimated effect may deviate from the 
population mean. Therefore, the missing genotypes have a contribution to the DGV and the 
contribution is the same for all individuals that have a missing genotype at the same locus, 
though the real genotypes are different among these individuals. The present study showed 
that this approach was not a good way to handle missing data. It performed even worse 
than replacing missing genotype with the most common genotype. In each locus a small 
proportion of individuals had missing genotypes. Therefore, the accuracy of the estimated 
effect for the new allele should be low which could be the main reason for the lower DGV 
accuracy than with the most common genotype method.

The effect of missing genotypes on genomic prediction was different when using 
different models. Different methods to handle missing genotypes had less difference on 
accuracy when using the GBLUP model than using the iBay model. Moreover, when using 
GBLUP imputing missing genotypes with Beagle always yielded the highest accuracy in three 
traits. However, when using iBay for protein yield and mastitis replacing missing genotypes 
with most common genotypes had the highest accuracy in many editing scenarios based on 
GC score. As a whole, the GBLUP model was more stable and robust than the iBay model. The 
difference between different methods to handle missing genotypes was small.

Different thresholds of GC score were used to edit marker data in this study. With more 
stringent criteria of GC score to editing data, more marker genotypes became missing. It 
has been observed that marker data excusing marker genotypes with GC score higher than 
0.15 results in a decrease of accuracy of genomic prediction (Edriss et al. 2012). The current 
study showed that even in the case if the missing genotypes were imputed using Beagle, 
the marker data edited with stringent criteria would not led to better genomic predictions 
than the data including all the marker genotypes with GC score higher than 0.15. The results 
suggest that the imputed marker genotypes are not more reliable than the reported marker 
genotypes as long as they have a GC score higher than 0.15.

In conclusion, genome-wide dense marker data usually contain missing genotypes. 
Although different genomic prediction programs have their own ways to handle missing 
genotypes, missing genotypes should be imputed using a sophisticated imputation method 
in order to improve genomic prediction. It is a good strategy to keep all genotypes with GC 
score over 0.15 for genomic prediction. The GBLUP model is more stable and less sensitive to 
different methods to handle missing genotypes than the iBay model.
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