Discovery of single nucleotide polymorphisms in FABP3 and leptin gene in pig (Brief Report)

Identifizierung von Einzelnukleotid-Polymorphismen im FABP3 und Leptin Gen beim Schwein (Brief report)

JAEEYOUNG KIM¹, HOEYOUNG CHUNG¹, SUYEON KIM¹, HEEJIN PARK¹ and DAE-HUCK KEWON²

¹Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Suwon, ²Department of Genetic Engineering, Sungkyunkwan University, Korea

Background

Knowledge about structural variations in genes and proteins relevant for fat traits is very important information to improve selection of breeding lines and preserve genetic variability in pig industry. The classical proteomics is a useful tool to separate and measure differentially expressed proteins in fat tissue of phenotypic different individual pigs. Single nucleotide polymorphisms (SNP) in the swine adipocyte fatty-acid binding protein 3 (FABP3) and leptin gene (LEP) were related to adipocyte accumulation and associated with meat quality in pigs (NECHTELBERGER et al. 2001, KULIG et al. 2001, KMIEC et al. 2003).

Procedure

Detection of single nucleotide polymorphisms

A total of 40 commercial pigs (Landrace × Duroc × Yorkshire) in 2 growth stages (150 and 210 days) were used from Swine Production Division at National Institute of Animal Science (NIAS). Back fat samples were collected and the samples were pooled after adjusting concentration to 6 mg/ml per individual. Isoelectric focusing (IEF) with 24 cm of IPG strips (pH 3-10 non-linear) with 8000 v/h and 12% of SDS-PAGE gels stained with Comassie G-250 were used. After characterization and identification of differentially expressed spots between growth stages, 2 primers were designed from known nucleotide sequences of the corresponding genes FABP3 (AJ416019) and LEP (NM213840). Specific primers were used with 2 ul 10 x reaction buffer, 2.5 mM dNTP, 50 ng of genomic DNA, and 0.2 U of DNA polymerase in a final volume of 20 ul. After heating at 95°C for 2 min, a total of 35 cycles were adapted for denaturation at 94°C / 1 min, annealing at 54~57°C/1 min, and polymerization at 72°C/2 min. The PCR products for 235 individuals were sequenced directly, and sequences were aligned to find SNPs by DNAstar version 7.0.

Primer sequences

LEP-F: 5’-CCTGGTTTGGGATTTGTATGC-3’; LEP-R: 5’-TGCCCTCCTTGTGACTATGC-3’
FABP3-F: 5’-GCCCATCCCTCAGCTGTCC-3’; FABP3-R: 5’-TTTTGCGTCGCTTTTATTG-3’
Results

After separation of differentially expressed spots between growth stages by IEF and 2 dimensional electrophoresis, mass spectrometer analysis revealed LEP and FABP3. Comparative sequencing of amplicons of 235 animals revealed a total of 23 SNPs in FABP3 containing 1 deletion (at nt121 in acc. no. EU981814) and 3 insertions (at nt127, nt271, and nt328) in Table 1.

Table 1
Detection of SNPs in gene fragments of FABP3 and LEP gene

<table>
<thead>
<tr>
<th></th>
<th>FABP3</th>
<th>Leptin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>S</td>
<td>AA</td>
</tr>
<tr>
<td>53</td>
<td>T/C</td>
<td>S/L</td>
</tr>
<tr>
<td>57</td>
<td>A/G</td>
<td>–</td>
</tr>
<tr>
<td>77</td>
<td>T/C</td>
<td>L/S</td>
</tr>
<tr>
<td>108</td>
<td>A/G</td>
<td>–</td>
</tr>
<tr>
<td>121</td>
<td>T/D</td>
<td>–</td>
</tr>
<tr>
<td>127</td>
<td>–/A</td>
<td>–</td>
</tr>
</tbody>
</table>

The obvious point in this analysis was 28 bp insertions (TTGTTGGGAACTAGTTAAGACAATAA) between positions 240 and 241, assuming to be repetitive sequences, and 3 nucleotides (T/C/G) at 306 in EU981814. Interesting findings were observed possible haplotypes with 8 SNPs that are always paired with others at positions 256 (G), 265 (C), 271 (T), 287 (T), 291 (G), 306 (G), 323 (A), and 327 (T). Two SNPs were observed in LEP with an amino acid change (S/X) at nt 256 of acc. no. FJ154077. In particular the polymorphisms causing amino acid exchanges, which are reported here first, potentials affect the phenotype. However, the further study will be needed to understand genetic functions of the identified SNPs with changing of protein expression in growth stages.

Acknowledgements

This work was supported by Rural Development Administration in Korea for production of »Proteomic analysis for the differentially expressed genes and identification of genetic markers related to animal growth in commercial pig population« in National Institute of Animal Science in Korea.

References


KMIEC M, KULIG H, KONIK A (2003) Preliminary results on associations between leptin gene (LEP) and some reproduction performance traits of boars. Arch Tierz 46, 63-70

Received 27 August 2008, accepted 2 December 2008.

Corresponding author:

Dr. HOYOUNG CHUNG
email: chung133@rda.go.kr
Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Suwon 441-701, Korea